
Your Name:

USPAS Fundamentals of Accelerator Physics Final Exam
June 24, 2016

This copy of the final includes solutions, shown in red. Derivations and explanations are given. The

requested answers are boxed . The number of possible points for each section of each problem is shown,
with a total of 62 points being possible for the exam. Generally, if an error in one calculation results
in errors in subsequent calculations, full credit will be given for the later calculations, provided their
answers are consistent with the earlier (ie, incorrect) value.

General Guidelines - Please Read!

• REMEMBER TO WRITE YOUR NAME above!

• This is an “open book” exam. You may use the texts, lectures, homeworks, or any of the online resources
found at the course website (http://home.fnal.gov/~prebys/misc/uspas_2016/), including previous finals.
You may use your computer (Excel, MathCad, etc) to do calculations; however, you are expected to work
independently and to not seek out other online sources for the solutions.

• This exam consists of 12 questions, some of which have multiple parts. Not all parts are of equal difficulty
and not all have equal weight.

• You may use anything that appeared in the lectures, textbook or assigned homework, without re-deriving it.

• You will need to work out some results on your computer or scratch paper, but your final answer should
be written on the exam itself!

• You are not required to show your work, but if you include the key equations for any derivation, you may
receive partial credit even if the final answer is incorrect. There is no need to show your work or explain your
reasoning for multiple choice and yes/no answers.

• All problems are straightforward applications of what you have learned. There are no trick questions or
complex calculations. If you find yourself working hard, it’s a good sign you’re not doing the problem
correctly. Stop and think!
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1. (10 Points) Please answer the following questions for a proton (mpc
2 = .938GeV) traveling at a velocity of

.9c.

(a) What is its momentum [GeV/c]?

p = γmβc =
β√

1− β2
(mc2)/c =

(.9)√
1− (.9)2

(.938) = 1.94 GeV/c

(b) What is its kinetic Energy [GeV]?

K = E −mc2 = γmc2 −mc2 = (γ − 1)mc2 =

(
1√

1− β2
− 1

)
mc2 =

(
1√

1− (.9)2
− 1

)
(.938)

= 1.21 GeV

(c) What is its rigidity [T-m]?

(βρ) =
(pc)

ec
=

(1.94)

(.300)
= 6.46 T−m

(d) If this proton travels through a 1cm long magnet with a 1T field, by what angle will it be deflected [rad]?

θ =
(BL)

(Bρ)
=

(.01)(1)

(6.46)
= 1.6 mrad

(e) If a beam of these protons travels through a 0.5m long quadrupole, what gradient will give a focal length
of 10m [T/m]?

F =
(Bρ)

B′L
→ B′ =

(Bρ)

LF
=

(6.46)

(.5)(10)
= 1.29 T/m

2. ( 5 Points) We have frequently used the following parameterization for the transfer matrix

M =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)

in which all the parameters (α, β, γ, and µ) are real numbers. Circle all of the following statement (a-e) that
are TRUE for this representation.

(a) It can be used to represent any combination of quadrupoles and drifts in a synchrotron or section of a
beam line.

FALSE Only stable, periodic elements with stable solutions can be represented like this.

(b) It can used to represent one cell in a periodic system for which stable solutions exist.

TRUE This representation was derived assuming a periodic, stable solution.

(c) The parameters α, β, γ are the lattice functions at the ends of the cell.

TRUE

(d) The parameters α, β, γ are constant throughout the cell.

FALSE This transfer matrix defines the lattice elements at the end. They must be transformed
to any other location within the cell.
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(e) If I solve for the lattice functions of this cell in a periodic system, they are guaranteed to be the same
for a physically identical cell in an extraction beam line.

FALSE Lattice funcions are only uniquely defined for periodic systems. Even if an identical
element is placed in a beam line, its lattice functions will be defined by the matching conditions
of the line.

3. (4 Points) Consider our standard, symmetric FODO cell.

!! !!!! !!

2F! $F!

L! L!

2F!

(a) If the quadrupoles are separated by L = 10m, What focal length F is required to have a phase advance
of µ = 60◦ over the cell [m]?

sin
µ

2
=

L

2F
→ F =

L

2 sin µ
2

=
10

2 sin(30◦)
= 10 m

(b) What will be maximum betatron function βmax with this phase advance [m]?

βmax = 2L

(
1 + sin µ

2

)
sinµ

= 2(10)
(1 + sin(30◦))

sin 60◦
= 34.6 m

4. (6 Points) A fundamental periodic cell of a synchrotron is described numerically (with units) by the matrix

(
0 50m
? 0

)
(a) If this is a representation of a stable, periodic cell, what must the value (including units!) be for the

lower left element?

As we said in the last problem, we can represent a periodic cell in the form.

M =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
Clearly, with his identification, cosµ = α = 0, sinµ = 1, and β=50 m. With this identificatoin,
the lower left element must be

γ =
1

β
=

1

(50)
= .02 m−1

(b) What are the lattice parameters α and β [m] at the ends of the cell?

As discussed in the last part, β = 50 m , and and α = 0 .

(c) What is the minimum phase advance µ of this cell [degrees]?

The fact that the upper left and lower right elements are zero tells us that cosµ = 0. The

minimum angle for which this is true is µ = 90◦

5. (4 Points) A properly matched proton beam with an unnormalized RMS emittance ε = 2µm is circulating in
a synchrotron with a maximum betatron function in the x plane of βmax = 30m.
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(a) What is the maximum physical RMS size of the beam σx in the x plane [mm]?

If you plug the emittance in in µm, you’ll get an answer in mm, but you can also solve it in SI
units.

σx =
√
εβmax =

√
(.000002)(30) = .0078 m = 7.8 mm

(b) If dispersion function at the location of βmax is Dx = 3m, what is the maximum fractional RMS
momentum spread δ ≡ σp/p0 we can tolerate if we want the motion due to the momentum spread to be
no larger than the beam spread due to betatron motion that you found in part (a)?

The beam motion due to momentum spread will be δDx, so if we want that motion to be no
larger than the betatron beam size, we have

δDx = σx → δ = σx

Dx
= (.0078)

(3) = .0026

6. (5 Points) Assuming a beam distribution is described by a Gaussian emittance and is properly matched to
the lattice, circle all of the things in the following list (a-e) that will change in the x plane immediately after
the beam has passed through a thin lens.

(a) βx

(b) αx

(c) γx

(d) The RMS size of the spatial distribution σx

(e) The RMS size of the angular distribution σx′

The transformation going through a thin lens is given on page 15 of the “Transverse Motion” lecture

α′ = α0 +
1

f
β0

β′ = β0

γ′ = γ0 +
2

f
α0 +

1

f2
β0

In addition, we have that σx ∝
√
βx and σx′ ∝ √γx, Therefore, the only things that will not change

are βx and σx, so the answer is (b), (c), and (e)

7. (5 Points) With regard to sextupoles, octopoles, and other magnetic elements of higher order than a quadrupole,
please circle all of the following statements (a-e) that are TRUE.

(a) Such elements may be represented by linear transfer matrices.

FALSE Transfer matrices can only be used for linear elements.

(b) There are general, explicit solutions for particle trajectories in the presence of such magnets.

FALSE There are no general, explicit solutions to motion through nonlinear elements.

(c) When analyzing particle dynamics, such elements must generally be treated perturbatively.

TRUE

(d) Such elements will generally result in chaotic motion and beam loss for sufficiently high amplitude
particles.

TRUE

(e) The only only reason to include nonlinear elements in a lattice design is to cancel out the anomalous
(unwanted) multipole moments of the dipole and quadrupole magnets.

FALSE Examples of uses for nonlinear elements include resonant extraction and chromaticity
control.
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8. (5 Points) The plot below shows the accelerating voltage V (t) of the RF system of a proton synchrotron.
Several possible values for the synchronous phase angle φs are labeled (a) through (e).
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If the particles in the synchrotron have energies above the transition energy, please describe each point with
the correct two words from the following two sets of choices: [”Accelerating” or ”Not Accelerating”] and
[”Stable” or ”Unstable”] (e.g. “Accelerating, Unstable”):

The equation for the synchrotron tune is

1

2π

√
−eV02πhη

Esβ2
cosφs

Because of the overall negative sign, stable motion requires η cosφs < 0. Since η > 0 above
transition, motion is only stable for φs > π/2. So the answers are

(a)

Not Accelerating, Unstable

(b)

Accelerating, Unstable

(c)

Accelerating, Unstable

(d)

Accelerating, Stable

(e)

Not Accelerating, Stable

9. (12 Points) A proton synchrotron has the following parameters:

• Circumference: 3 km

• RF Harmonic number: 500

• Maximum RF voltage: 1 MV

• Transition gamma (γT ): 25

• RMS Longitudinal emittance (εL): 0.1 eV-s

Please calculate the following at the point when the beam is accelerating though Es = 100GeV with a
synchronous phase angle of φs = 120◦ You may assume the beam is traveling very close to the speed of light
(β ≈ 1).

(a) What is the period of the machine [µs]?
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τ =
C

v
≈ C

c
=

(3× 103)

(3× 108)
= 1× 10−5 s = 10 µs

(b) What is the frequency of the RF [MHz]?

f =
h

τ
=

(500)

(10µs)
= 50 MHz

(c) What is the ramp rate of the acceleration dEs/dt [GeV/s]?

dEs
dt

=
V0 sinφs

τ
=

(1× 106)(sin(120◦))

1× 10−5
= 8.7× 1010 eV/s = 87 GeV/s

(d) What is the slip factor η?

η =

(
1

γ2T
− 1

γ2

)
=

(
1

γ2T
−
(
mc2

Es

)2
)

=

(
1

(252)
−
(

(.938)

(100)

)2
)

= .0015

(e) What is the the longitudinal betatron function βL [s/eV]?

βL =

√
− τη

eV0ωRFEsβ2 cosφs
=

√
− τη

2πfeV0Esβ2 cosφs

=

√
− (10× 10−6)(0.0015)

2π(50× 106)(1× 106)(100× 109)(1)2(cos 120◦)

= 3.1× 10−17 s/eV

(f) What is the RMS time distribution σt [ns]?

σt =
√
βLεL =

√
(3.1× 10−17)(0.1) = 1.7× 10−9 s = 1.7 ns

10. (2 Points) A collider collides two proton beams, each with nb bunches of Nb particles each. If nothing else
changes, by what factor will the luminosity increase if I double the bunch size Nb in both beams?

L = frev
nbN

2
b

4πσ2

so if Nb goes up by two, the luminosity goes up by a factor of four .

11. (2 Points) The maximum energy reached by the LEP e−e− collider was 104 GeV/beam. By what factor would
they have had to increase the RF power to increase the energy per beam to 175 GeV - the energy needed
to study the Higgs particle - in order to compensate for the increased synchrotron radiation loss? You may
assume that the beam current and the RF efficiency stay the same.

The power radiated by a charged particle is given by

P =
e2c

6πε0

γ4

ρ2

so if everything else remains the same, the power will scale with the fourth power of the energy

P175 =

(
175

104

)4

P104 = 8.0P104
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12. (2 Points) A synchrotron is designed to operate with a tune in the x plane of νx = 9.82. Trim quadrupoles are
used to gradually lower the tune in the x plane only. The machine continues to operate smoothly until the
tune drops below 9.69, at which point beam loss begins to increase. Of the following list (a-e), which would
be the most likely explanation for this behavior (circle one):

(a) A misaligned quadrupole

(b) Anomalous quadrupole moments caused by imperfect magnets.

(c) A rotated quadrupole.

(d) Anomalous sextupole moments caused by imperfect magnets.

(e) Anomalous octopole moments caused by imperfect magnets.

The beam begins to become unstable as the tune appreaches 9 2/3, so this is most likely due to a
third integer resonance, which is caused by

(d) Anomalous sextupole moments

END OF EXAM
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